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Abstract-— By the introduction of two displacement functions, the non-axisymmetric free vibrations
of a complete thin isotropic spherical shell submerged in a compressible fluid medium are successfully
investigated. It is found that there exist two classes of free vibrations : the first class is not affected
by the ambient fluid while the second is. It is further proved that the frequency equations can be
expressed in terms of polynomial. For the second class, it is also demonstrated that only complex
frequencies exist except for the case of n = 1, for which the trivial solution Q = 0 emerges. For
n =10, 1 and 2, the frequency equations of the second class are investigated numerically and the
eflects of various relative parameters are discussed. The small damping coefficient method is also
discussed finally in the paper. 1 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The vibration problems of spherical shells coupled with ambient media have attracted much
attention both from engineers and scientists because of the wide usage of spherical sheils in
practical engineering. Junger (1952) first considered the free vibrations and the associated
radiation of sound of a thin spherical shell submerged in a compressible fluid medium.
Hayek (1966) studied the axisymmetric non-torsional vibration of a spherical shell in an
acoustic medium by utilizing the Lagrange equation ; as an example, he gave the analysis
of dynamic behavior of a thin spherical shell submerged in a compressible fluid medium
which undertook a point harmonic force. Lou and Su (1978) pointed out that the damp
characteristic of free vibrations of submerged thin spherical shells was solely due to the
compressibility of the fluid when the effect of the viscosity of the fluid was not taken into
consideration, but strict demonstration was not given ; for 4 steel spherical shell submerged
in water, they calculated the frequencies with small damping components. Felippa and
Geers (1980) carried the Laplace transform on the wave equation to obtain the fluid
pressure and the frequency equation for axisymmetric case was derived with its root-loci
plots presented. Su (1982) turther discussed the effect of the fluid viscosity on the free
vibrations of a submerged spherical shell, using a boundary layer approximation for the
fluid medium. To the authors’ knowledge, the available studies on the coupling vibrations
of submerged spherical shells all dealt with the axisymmetric cases. However, the non-
axisymmetric free vibrations of spherical shells in vacuum have been exhaustively studied
by several authors (Prasad, 1964 ; Wilkinson and Kalnins, 1965 ; Ramakrishnan and Shah,
1970). Prasad (1964). for example, simplified the governing equations of a thin spherical
shell to two uncoupled partial differential equations and one partly coupled partial differ-
ential equation by introducing some certain auxiliary variables and solutions in terms of
associated Legendre functions were obtained. Recently, Ding and Chen (1996a, b) exactly
studied the free vibrations of embedded or submerged spherically isotropic spherical shells
based on the three-dimensional elastic theory; for the submerged case (Ding and Chen,
1996b), due to the inclusion of the second kind of spherical Hankel functions in the resulted
frequency equations, the small damping coefficient method suggested by Lou and Su (1978)
was emploved to calculated the frequencies with small damping components. However,
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detailed and delicate investigation on the frequency equation that corresponds to the thin
shell theory was not presented.

Lou and Su (1978) was the first to mention that the frequency equation of a submerged
spherical shell can be written in a rational expression and the free vibration of the spherical
shell in compressible fluid is damping. Felippa and Geers (1980) employed a different
method to derive the rational form frequency equation, however, in their further discussion,
they only considered the numerator polynomial and omitted the nominator one without
strict demonstration. They showed the damp characteristic by root-loci plots also without
theoretical verification.

This paper presents a detailed investigation on the thin shell theory which employs the
Kirchhoff assumptions. First, by using relative formulae in Ding and Chen (1996b). the
governing equations of nonaxisymmetric free vibrations of a submerged spherical shell are
given. It is proven that there are two classes, however, only the second class is affected by
the ambient fluid. Second, the rational form frequency equations are obtained and it is
strictly demonstrated that the frequency equations only have complex roots, thus the damp
characteristic of the second class free vibration is proven. It is further verified that the
numerator and nominator polynomials have no common zero point, then the polynomial
form frequency equations are consequently derived. The effects of various parameters are
discussed. Finally, the practicability of small damping coefficient method is evaluated.
Because the polynomial form frequency equation can be exactly solved, it can be used to
clarify the precision of various approximate theories.

2. BASIC EQUATIONS AND DERIVATIONS

The spherical coordinates and the geometry of a thin spherical shell are shown in Fig.
I. Assume the middle surface displacement to be u, v and w in 6, ¢ and r direction,
respectively. Allowing for the Kirchhoff assumptions. one has, in eqn (44) in Ding and
Chen (1996b), 8, = 0 as well as

1 w 1 onw »
fo = k (M*“ {;?)), ﬂq, = R (IVT*CSC 2] 2%) (1)

The governing equations can also be obtained by utilizing Hamilton’s principle. According
to eqn (46) in Ding and Chen (1996b), only the decomposition formulae of v and v are
retained in this paper. Setting RG, = @, one obtains

(Vi+ Q>+ 2)¥ =0, (2)

5 s l+ve?
(Vi4+c,) P+ (e Vi+c)w =2WRcosO+ '-»--7-1 %f)f Rsiné, (3)

Fig. |. Spherical coordinates and the geometry of a thin spherical shell.
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¥

V204 (Vi +0sVi 4 copw = 2¥ R cos 0+ ?—9— Rsin 0, )
where
L ¢ ¢ e
j=-—4cost - +csct 00—, (5)
00° il 0¢?

o =P 4. o= —e12

= THv+20es, g = —c/(1+v)

(o= —2her. ey = 2= DO 11 Qh, (Qfcy)
Q= Rwivs, 3= E/[2(1+v)p]

Po = PP Co = Gt
Lo=(—=v)2, L =1/(1+v)
Iy = pyeoje. e = h/R (6)

and function A,(x) is defined by eqn (23) in Ding and Chen (1996b).

Obviously, eqn (2) is a second-order homogeneous partial differential equation only
about function . It is shown that the radial displacement is absent. It actually corresponds
to the first class of vibration in the three dimensional elastic theory (Ding and Chen, 1996b).
Equations (3) and (4) are coupled by functions @ and w, and it can be seen that the right
hands of these two equations still include function . In fact, by virtue of eqn (2), functions
¥ and ® can be eliminated skilfully from eqns (3) and (4) and a sixth-order partial
differential equation only of function w can be obtained as follows

["4‘7? aal (e SO “(':)V? + (s + s “('3)V% +oycg]w = 0. (7)

Though eqn (7) is only relative to function w., it is seen from eqns (3) and (4) that function
@ still exists. It is noticed here that eqn (7) corresponds to the second class of vibration in
the three dimensional elastic theory (Ding and Chen, 1996b).

3. FREQUENCY EQUATIONS AND INVESTIGATION

For a complete spherical shell, it can be seen from eqns (2) and (7) that functions w
and ¥ can be assumed in the following form

4

w= Y A,SU0.¢)expliovn. Y=Y B,SI0,p)explion, (8)

n=10 R

where S7'(0, ¢) = P (cos ) exp(ime) is the spherical harmonic function and P7'(x) is the
associated Legendre function of variable x: 4, and B, are arbitrary constants. Substituting
eqn (8) into eqns (2) and (7), respectively, one obtains two classes of frequency equations
as

Q =m—1)(n+2), 9
et (n+ 1) —(cs+ ey =) (n+1)" +(co + ¢ cs —cmn+1) —c e = 0. (10)

It is seen that eqn (9) does not include any fluid parameter and it is identical to that
obtained by Love (1944). We will not discuss eqn (9) later anymore.
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For n = 0, the spherical shell has radial displacement only, and this mode is always
called the breathing mode. In this case, eqn (9) has no meaning and only the second class
exists, of which the frequency equation can be easily obtained as follows

¢ = 0. (1
We rewrite eqns (11) and (10) in the following forms
Fieix? =2 = Fyeoxhy(x), (n=0), (12)
Fiolx* + Fodxt + Fs = (Fooi X+ Fo)egxh,(x). (n=1,2,...), (13)
where x = Q/¢,: F, are nondimensional quantities defined as follows

Fio=>0L F=5Li F=Ih

Fo=2L1—Lan+ 1)~ {ean*(n+1) —csn(n+1)+ 2]

Fo=cn*(n+1) 4+ (cs —cs =2l e’ (n+ 1)+ (2—c3 =2 cs)n(n+ 1) — 4,
=cy(n—Dn+D[an+ D) (n* +n+v—1)+21, /4]
Fo=0LF,, F, =2, —nln+1)]F,. (14)

It is noted here that, if setting 4,(x) = 0, eqns (12) and (13) then become to those in the
vacuum. Equation (12) will read in this case

0-2 /)!+1

- 15
NV I-v ()
The above equation is identical to that obtained by Love (1944). If the spherical is very
thin, i.e. ¢ — 0, then setting ¢, = 0 as well as 4,(x) = 0 in (13) gives

7 )
[ - (n a4 L3007 + 407 —|—n~-7)1—i:— 0. (16)

This equation is also identical to that obtained by Love (1944). If the ambient fluid is
considered as incompressible, then the term cyh,(x) in eqns (12) and (13) should be replaced
by —Q/(n+1) (Ding and Chen, 1996b).

By virtue of the famous Rayleigh formula of spherical Hankel function (Watson, 1966)

o0y = (— e {3V T L expi—i —0.1.2
A7 (x) =(—1)"ix (de) [Xexp( 1.»()} n=0,1,2,...), (17)

one can rewrite A.2(x) in the following form:

4( ) .
(\)— exp(—l'c) (n=0,1,2,...), (18)

where 4,(x) represents an »#-th order polynomial of variable x. By employing the recurrence
formula of spherical Hankel function A%’(x), one can derive the recurrence formula of
polynomial 4,(x) as
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Ax) =2n—1)A,_ (x) = x4, -(x), (n=2,3_...). (19)
In addition, one can directly obtain
Ax) =1, A/ (x)=1—x. (20)
From eqn (19), one gets
AX) = 34, (x) =X A (x) = 3({—x)—ix>. (21)
By virtue of eqns (19) and (20), one can also ge the constant term of polynomial A4,(x)
ay=1 d =13-5..2n—11. (n=1.2,...). (22)

Using eqn (18), the function 4,(x), which were given by eqn (23) in Ding and Chen (1996b),
can be rewritten in the following form

h(x) = xA,(x0)/B,,(x}), (n=0,1,2,...), (23)
where
B,, (x)=nA4,(x)~A,.,,(x), (#=0,1.2....). (24)
Obviously B, ;(x) is an (n+ 1)-th order polynomial of variable x with its constant term
A =nd —2n+Da) = —(n+ D), (n=0,1,2,...). (25)
Note that eqn (23) directly gives £,(0) = 0, and so x = 0 (i.e. Q = 0) is not the root of
eqn (12). If x = 0 1s just the root of eqn (13), it demands F = 0. It is seen from eqn (14)
that this will be satisfied for n = 1. Because /, > 0 and ¢, > 0, one has F; > 0 when n = 2,
x = 0 is no longer the root of eqn (13) for alln > 1.

It can be further shown that both eqns (12) and (13) have no non-zero real roots.
First, by virtue of the Wronskian (Watson, 1966)

.[u(-“)’ﬂx(»“) “_“4].;.'(-\‘)”/1(-\4) =X lv (26)

where j,(x) and #,(x) are the derivatives of the first and second kinds of spherical Bessel
functions j,(x) and n,(x), respectively, one can get the imaginary part of function A,(x) as
follows

]

—eo———— > (), (when x is a non-zero real). 27N
ARG

Im[h,(x)] =

Therefore, if eqns (12} and (13) have any real root, one should get, respectively,
Fo=0, Fey—2=0, (28)
FooixP+F, =0, Fyeix* 4+ Fieix®+F; = 0. (29)
However, from eqn (14}, one has F, = /,/; > 0. That is to say, eqn (28) cannot be satisfied
any longer and, consequently, eqn (12) has no real root. For any real root x # 0 to exist

for eqn (13), the following equation must be satisfied from eqn (29) by eliminating variable
X
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F=FFi+F,F,F+FF; =0. (30
But further calculation gives
F= —[l4c,(n* +n+v—D)1+v)n(n+ DI F3. 31

Since ¢, > 0,0 < v < 0.5and n = 1, one has F < 0. Obviously, this result is in) conflict with
eqgn (30). It means that eqn (13) has not yet non-zero real root.

By virtue of eqn (23), the frequency eqns (12) and (13) can be written in the rational
form

C:(x)/Bi(x) =0, (n=20), (32)
Cos(x)}/B, 1 (x)=0, (n=12.), (33)

where C,(x) represents a n-th order polynomial of variable x, one has
Ci(x) =(Fieix? =2)B, (x) = Fycox? Ao (x), (n=0), (34)

Cois(x) = (Fyeix + Focix? + F5)B, .1 (x) _(Fﬁc(z)xz +F)eox*4,(x). (n=1,2,...).
(35)

From eqns (20) and (24), on has B;(x) = x—1 and Cs(i) = i¢,F, # 0. It is obvious that
they have no common zero point (or common factor), and thus, eqn (32) can be simplified
to

Ci(x) = Fie§x* —i(Fycj+ Facg)x* —2x+2i =0, (n=0). (36)

Equations (20) and (21) directly show that 4,(x) and 4,(x) have no common zero
point. One can further verity that 4,(x) and 4,_,(x) have no common zero point yet by
employing the inductive method. The process can be simply stated here: if 4,(x) and
A,..1(x) have a common zero point x, # 0 [since a° # 0, see eqn (22)], then from eqn (19),
X, is also the zero point of 4,_,(x), however, this is conflict with the assumption of the
inductive method. In a similar manner, one can verify that B, (x) and 4,{x) have also no
common zero point by virtue of eqn (24).

According to the results obtained above, one can only discuss the complex roots of
frequency eqn (33) here and after. From eqn (35), the condition that C, s(x) and B, ,(x)
have a common complex zero point demands F,cix” + F, = 0. However, the solution this
equation reads

, —F, nn+h+v—1
X7 = = >

T2 2
ok ol

0, (37

L.e. the root is a real. This means C,_s(x) and B, (x) cannot have any common complex
zero point. So, in the case of seeking complex roots, the frequency eqn (33) can be simplified
to

C.s5(x)=0, (n=1,2..). (38)

It can be further seen from eqn (35) that x = 0 is the double root of eqn (13) or (33) when
n =1, that is, all roots of original frequency eqns (13) and (33) can be solved from eqn
(38). Thus, eqn (38) is quite equivalent to frequency eqn (13) or (33). As shown earlier
above, all roots of eqn (12) or (32) can also be solved from eqn (36).
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Therefore, through strict derivation, we transform the rational form frequency eqns
(32) and (33) to the polynomial form frequency eqns (36) and (38) that include complex
coefficients. In fact, one can further transform these resulted frequency equations to those
only including real coefficients, the process is now described in the following.

Writing A4,(x) in the form

A, (x) = p,(x)+ig,(x), (39

where p,(x) and ¢,(x) are both real polynomials. Their recurrence formulae are identical to
that of 4,(x). Further, from eqn (20), one gets

Po=0, gqo=1;, p=-x, q =1 (40)

By virtue of their recurrence formulae, it is shown that p,(x) is an odd function, while ¢,(x)
is an even one. This indicates that the coefficients of the odd order terms of polynomial
A,(x) are real while those of the even ones are pure imaginary. From eqns (24), (34) and
(35), it is known that C;(x) and C,. s(x) also have the same characteristic as that of 4,(x).
Therefore, setting

x =y, (41)

and substituting it into eqns (36) and (38), one can get one cubic real algebraic equation
and one real algebraic equation of (n+ 5) degree, respectively,

Ry(y) = Fieiy* —(Fie§+ Faco)y* +2y=2 =0, (n=0), (42)
R.s(») =0, (n=12,...) (43)

As in the case studied by Silbiger (1962), the integer m, which appears in the spherical
harmonic and represents the non-axisymmetric motion (m # 0) of the shell is not included
in the frequency equations.

4. NUMERICAL RESULTS

It is shown that the nondimensional frequency € are related to nondimensional par-
ameters py, ¢o, v and e. In the following, we will investigate the effects of these parameters
on the frequencies. Equation (36) and (42) is a cubic algebraic equation, its roots can be
directly written out ; to solve the roots of eqn (38} or (43), the Laguerre method is employed
(Stoer and Bulirsch, 1980).

For different mode number », the natural frequencies of the following four cases are
calculated: (1) e = 0.03, ¢, = 0.3, v = 0.3 and with p, = 0.1-0.4; (2) ¢ = 0.03, p, = 0.2,
v = 0.3 and with ¢, = 0.2-0.5; (3) e = 0.03, py = 0.2, ¢, = 0.3 and with v =0.1-0.4; and
4)v=0.3, py=0.2, ¢, = 0.3 and with ¢ = 0.01-0.04. According to the numerical results,
it is easy to draw the corresponding root-loci plots (to save space, figures are omitted in
this paper). Results show that the root-loci plots are axisymmetric about the imaginary
axis and the imaginary parts of complex frequencies are always greater than or equal to
zero. This is actually identical to the practical situation.

In particular, for #n = 0, frequency eqn (36) has only three complex roots and the root-
loci plots are rather simple. For the couple that are axisymmetric about the imaginary axis,
with the increase of p, or ¢,, the absolute value of the real component of Q decreases while
the imaginary component increases ; with the increase of e, the absolute value of the real
component of Q increases while the imaginary component decreases; with the increase of
v, the absolute value of the real component of £ increases while the imaginary component
keeps basically invariant. For the pure imaginary, the effects of p,, v and e are very weak,
however, with the increase of c¢,, the pure imaginary increases evidently. When n > 1, the
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number of root of frequency eqn (38) is greater than or equal to six and the root-loct plot
is consequently more complicated. It is worth mentioning that, when n = 1, zero is a double
root of frequency eqn (38). Numerical results show that frequency eqn (38) has at least a
couple of roots with small absolute value of the real component as well as small imaginary
part. This lower frequency with small damping coefficient is surely of practical importance.

S. SMALL DAMPING COEFFICIENT METHOD

In two previous papers (Lou and Su, 1978 ; Su, 1982), without obtaining the polynomial
form frequency equations, Lou and Su thought that the frequency equations were very
difficult to be exactly solved due to the inclusion of the second kind of spherical Hankel
functions and, on account that designers in practical engineering were only interested in
the frequencies with a small damping characteristic, a small damping coefficient method
(SDC method) was developed to seek such frequencies, i.e.

Q = Q%1 +1ig), (44)

where Q° = 0, 0 < ¢ « 1. Substituting eqn (44) into the frequency equations. by virtue of
Taylor expansion theorem, dropping all higher terms of ¢, setting both the real and imagin-
ary parts of the resulted equation equal to zero and eliminating &, one can get a real
coefficient equation of variable Q°. When Q° is obtained from this equation, one can directly
get ¢ and then Q is also obtained. Details on this method can be found in Lou and Su
(1978). Recently, authors (Ding and Chen, 1996b) also adopted the SDC method to solve
their complicated and complex transcendental frequency equations.

How precise is the of SDC method? What restrictions should be imposed on 1t? Is it
suitable for every case? These equations are still obscure. Therefore, it is very meaningful
to check this method by comparing it with the present exact one. Results of two parameters
by two methods are listed in Table 1.

It 1s shown from Table | that, for the first group of parameters, due to the evident
damping effect of the fluid on the free vibration of the shell, the frequency equation itself
has no root possessing small imaginary part (except for the case that # = I, for which the
trivial solution Q = 0 emerges) and the results obtained by SDC method deviate significantly
from those obtained by the exact method. For the second group, however. the situation is
opposite, and the results of SDC method agree well with the exact ones. In fact. by making
a thorough investigation of the results, it can be found that for the first group of parameters,
though the relative error of the imaginary part that represents the damping characteristic
comes up as high as 125.8% (n = 2), the one of the real part that represents the speed of
the intrinsic vibration of the submerged shell, which is most important in practical engin-
eering, is just only of 14.1% (n = 2). This point shows that the results for problems with
large damping factors obtained by SDC method are also valuable for reference in a certain
degree. Especially for complicated, complex frequencies, SDC method can yet be regarded

Table I. Comparison between SDC method and exact method (€2)

Po=10.2.¢,=02 Py =0.05, ¢, =05

e =003, v =03 e =003, v =03

(n )

n SDC EXACT $DC EXACT
0 (2.506, 0.662) (2.591,0.663) (2.586, 0.401) (2.616, 0.402)
| (0, 0) (0. 0) 0, 0) {0, 0)
2 (0.494, 0.359) (0.433. 0.159) {0.930, 0.068) (0,935, 0.062)
3 {0.607. 0.231) (0.599, 0.130) (1.137. 0.029) (1.143,0.027)
4 (0.738, 0.135) (0.747, 0.094) (1.275, 0.007) {1.279. 0.006)
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as an effective means to seek the approximate periods of the natural vibration of the
structure.

6. CONCLUSION

(1) The nonaxisymmetric free vibrations of a complete spherical shell submerged in a
compressible fluid medium can be divided into two classes. In the absence of ambient
fluid, the two classes of frequency equation are coincident with those obtained in Love
(1944) with ¢ — 0.

(2) The second class of vibration of a submerged spherical shell is damping except for the
case n = 1, for which one has Q = 0 and this corresponds to a rigid movement.

(3) The second class of frequency equation can be simplified to a complex algebraic
equation of higher degree and further to a real one. In this sense, calculation is
simplified.

(4) The introduction of polynomial 4,(x) and the derivation of its recurrence formula
make it convenient and direct to express the spherical Hankel functions. It can be seen
that it is superior to the famous Rayleigh formula in the sense of application.

(5) When »n = 2, it is found that frequency eqn (38) has at least one lower root possessing
a weak damp characteristic in our calculations, which is of great importance in practical
engineering.

(6) By comparing SDC method with the present exact one, it is shown that the error of
SDC method is mainly shown in the imaginary part. However, from the point of view
of practical consideration, the real part is still valuable for reference.
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